f(x) = sin x として,-π ≦ x ≦ 2π まで,有名な値を表にする。
| x | 
-π | 
… | 
\(-\dfrac{5}{6}\pi\) | 
… | 
\(-\dfrac{3}{4}\pi\) | 
… | 
\(-\dfrac{2}{3}\pi\) | 
… | 
\(-\dfrac{\pi}{2}\) | 
… | 
\(-\dfrac{\pi}{3}\) | 
… | 
\(-\dfrac{\pi}{4}\) | 
… | 
\(-\dfrac{\pi}{6}\) | 
… | 
0 | 
| sin x | 
0 | 
↘ | 
\(-\dfrac{1}{2}\) | 
↘ | 
\(-\dfrac{\sqrt{2}}{2}\) | 
↘ | 
\(-\dfrac{\sqrt{3}}{2}\) | 
↘ | 
-1 | 
↗ | 
\(-\dfrac{\sqrt{3}}{2}\) | 
↗ | 
\(-\dfrac{\sqrt{2}}{2}\) | 
↗ | 
\(-\dfrac{1}{2}\) | 
↗ | 
0 | 
| x | 
0 | 
… | 
\(\dfrac{\pi}{6}\) | 
… | 
\(\dfrac{\pi}{4}\) | 
… | 
\(\dfrac{\pi}{3}\) | 
… | 
\(\dfrac{\pi}{2}\) | 
… | 
\(\dfrac{2}{3}\pi\) | 
… | 
\(\dfrac{3}{4}\pi\) | 
… | 
\(\dfrac{5}{6}\pi\) | 
… | 
π | 
| sin x | 
0 | 
↗ | 
\(\dfrac{1}{2}\) | 
↗ | 
\(\dfrac{\sqrt{2}}{2}\) | 
↗ | 
\(\dfrac{\sqrt{3}}{2}\) | 
↗ | 
1 | 
↘ | 
\(\dfrac{\sqrt{3}}{2}\) | 
↘ | 
\(\dfrac{\sqrt{2}}{2}\) | 
↘ | 
\(\dfrac{1}{2}\) | 
↘ | 
0 | 
| x | 
π | 
… | 
\(\dfrac{7}{6}\pi\) | 
… | 
\(\dfrac{5}{4}\pi\) | 
… | 
\(\dfrac{4}{3}\pi\) | 
… | 
\(\dfrac{3}{2}\pi\) | 
… | 
\(\dfrac{5}{3}\pi\) | 
… | 
\(\dfrac{7}{4}\pi\) | 
… | 
\(\dfrac{11}{6}\pi\) | 
… | 
2π | 
| sin x | 
0 | 
↘ | 
\(-\dfrac{1}{2}\) | 
↘ | 
\(-\dfrac{\sqrt{2}}{2}\) | 
↘ | 
\(-\dfrac{\sqrt{3}}{2}\) | 
↘ | 
-1 | 
↗ | 
\(-\dfrac{\sqrt{3}}{2}\) | 
↗ | 
\(-\dfrac{\sqrt{2}}{2}\) | 
↗ | 
\(-\dfrac{1}{2}\) | 
↗ | 
0 |